Abstract
The concept of complex time is employed to derive the time domain representation of the Green's function of a periodic structure for the first time. The spatial domain Green's function of the periodic structure in the frequency domain is separated into singular and nonsingular terms. The nonsingular terms are approximated by using exponential functions, resulting in the well known complex time representation of the time domain Green's function. In order to find a closed form expression for the singular terms, a novel time domain representation of the Sommerfeld-type integrals is derived. The proposed procedure is applied to the computation of the time domain Green's function of a one dimensional periodic structure. Numerical experiments demonstrate the high accuracy of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.