Abstract

We prove that a set of nonsingular free solutions of Maxwell's equations forms a representation of the group obtained by analytic continuation of the Poincaré group to complex values of the group parameters, and that a set of singular solutions forms a representation of the group obtained by analytic continuation of the conformal group to complex values of the group parameters. These results are obtained by constructing a theory governing 2 × 2 complex matrix fields defined for complex values of position and time; the equations of this theory are invarient with respect to complex Poincaré transformations and complex conformal transformations, but the set of nonsingular solutions is in one-to-one correspondence with a set of nonsingular solutions of Maxwell's equations, and a similar correspondence exists for the singular solutions. Certain collections of solutions of Maxwell's equations for the field of a current form representations of these complex groups if both magnetic and electric currents are permitted, in which case complex transformations provide a natural connection between electric and magnetic charge. A class of complex transformations also yield natural relations between sources moving slower than light and sources moving faster than light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.