Abstract

Atomic resolution scanning tunneling microscope (STM) images of native and artificially created defect sites on graphite and carbon nanotubes were compared. The presence of position-dependent coexisting superstructure patterns was identified on all of the investigated samples. The results indicate that superstructure patterns are mainly determined by the available scattered states of the system rather than the detailed structure of the defect site. We propose an interference model, which can explain the presence of coexisting superstructures both on graphite and carbon nanotubes. The model predicts reduced corrugation amplitude for the case of graphite as compared to carbon nanotubes due to the wave-vector averaging on the Fermi circle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.