Abstract
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a traditional approach, which is quite powerful since it shows the best and worst alternatives at the same time, for solving multi-criteria group decision-making (MCGDM) problems. On the other hand, the theory of complex spherical fuzzy set (CSFS) has a noticeable advantage over the other set theories which process the uncertain data since this theory includes the abstinence part of uncertain information in addition to satisfaction and dissatisfaction in two-dimensional data. This paper proposes to merge the feasible and remarkable structure of the CSFS with the excellent tendencies of the traditional TOPSIS where the information about the weights of both the decision-makers (DMs) and criteria are completely unknown. So, we establish a novel TOPSIS method under the complex spherical fuzzy environment by calculating the weights of both the DMs and criteria objectively with the novel entropy measure function that we constructed for this method. Furthermore, we give a numerical example to explain the proposed method step by step. Finally, we compare the solutions to the current problem with the various existing MCGDM methods to provide the capabilities and validity of the presented method. We also give a sensitivity analysis by changing the entropy to demonstrate the robustness of the weights of the criteria under the prevailing entropy measure function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.