Abstract

The spectral minutiae representation is designed for combining fingerprint recognition with template protection. This puts several constraints to the fingerprint recognition system: first, no relative alignment of two fingerprints is allowed due to the encrypted storage; second, a fixed-length feature vector is required as input of template protection schemes. The spectral minutiae representation represents a minutiae set as a fixed-length feature vector, which is invariant to translation, rotation and scaling. These characteristics enable the combination of fingerprint recognition systems with template protection schemes and allow for fast minutiae-based matching as well. In this paper, we introduce the complex spectral minutiae representation (SMC): a spectral representation of a minitiae set, as the location-based and the orientation-based spectral minutiae representations (SML and SMO), but it encodes minutiae orientations differently. SMC improves the recognition accuracy, expressed in term of the Equal Error Rate, about 2–4 times compared with SML and SMO. In addition, the paper presents two feature reduction algorithms: the Column-PCA and the Line-DFT feature reductions, which achieve a template size reduction around 90% and results in a 10–15 times higher matching speed (with 125,000 comparisons per second).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.