Abstract
Individual images in dynamic molecular imaging studies are noisy because of short duration of frames. To reduce noise in these studies we used a method that employed the Hilbert transform and Singular Value Decomposition (SVD) processing. Use of this method, which we call the Complex Singular Value Decomposition (CSVD), significantly reduces noise while preserving signal intensity of dynamic images. Further, we used simulations to examine the effect of CSVD processing on estimates of receptor kinetic parameters. We found a significant reduction in variance when CSVD processing was applied to images that had Gaussian noise added to the signal. The signals were preserved even after adding noise, thus the simulations revealed that noise reduction was not at the cost of relevant signal. It therefore appears that CSVD processing can be used in dynamic molecular imaging and other similar studies to reduce noise and improve signal quality. Keywords: Singular value decomposition (SVD), complex singular value decomposition (CSVD), dynamic PET, noise reduction, molecular imaging, dopamine, raclopride, Positron Emission Tomography, SRTM
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.