Abstract

Polyelectrolyte multilayers (PEMs) have significant potential in many technologies, yet the dynamics of the constituent polymer chains remains poorly understood. We used total internal reflection fluorescence microscopy to observe microscopic single-molecule transport of fluorescently labeled poly-l-lysine (PLL) diffusing within the bulk of a PEM composed of PLL and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) when exposed to NaCl solutions ranging in concentration from 0 to 2 M. Statistical analysis of PLL trajectories revealed motion that was nonergodic, subdiffusive, and temporally anticorrelated under all conditions. In contrast with previous macroscopic measurements of polymer diffusion within PEMs, the microscopic diffusion was 2-3 orders of magnitude faster and varied nonmonotonically with salt concentration in a way that was similar to trends previously associatedwith PEM swelling and viscoelastic properties. This trend in the anomalous diffusion was attributed to complex salt-dependent changes in the viscoelastic properties of the film that balanced intermolecular binding and molecular conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.