Abstract

In this paper, two equivalent definitions of complex strongly extreme points in general complex Banach spaces are shown. It is proved that for any Orlicz sequence space equipped with the p-Amemiya norm ( 1 ⩽ p < ∞ , p is odd), complex strongly extreme points of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in Orlicz sequence spaces equipped with the p-Amemiya norm are given. Criteria for complex mid-point locally uniform rotundity and complex rotundity of Orlicz sequence spaces equipped with the p-Amemiya norm are also deduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.