Abstract

Plane wave imaging persists as a focal point of research due to its high frame rate and low complexity. However, in spite of these advantages, its performance can be compromised by several factors such as noise, speckle, and artifacts that affect the image quality and resolution. In this paper, we propose an attention-based complex convolutional residual U-Net to reconstruct improved in-phase/quadrature complex data from a single insonification acquisition that matches diverging wave imaging. Our approach introduces an attention mechanism to the complex domain in conjunction with complex convolution to incorporate phase information and improve the image quality matching images obtained using coherent compounding imaging. To validate the effectiveness of this method, we trained our network on a simulated phased array dataset and evaluated it using in vitro and in vivo data. The experimental results show that our approach improved the ultrasound image quality by focusing the network's attention on critical aspects of the complex data to identify and separate different regions of interest from background noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.