Abstract

Filamentous fungi produce cellulolytic and hemicellulolytic enzymes in response to small inducer molecules liberated from cellulosic biomass. Enzyme production is mainly regulated at the level of transcription. The first transcription factor identified as being involved in cellulosic biomass degradation was XlnR, which mediates D-xylose-triggered induction of xylanolytic and cellulolytic genes in Aspergillus. XlnR has played the leading role for over a decade in studies aimed at clarification of gene regulation related to cellulosic biomass degradation. Very recently, several new transcription factors were identified, namely Clr-1/2 in Neurospora; ManR, McmA, and ClbR in Aspergillus; and BglR in Trichoderma, all of which participate in the regulation of cellulolytic and/or hemicellulolytic enzyme production. Furthermore, as well as the carbon sources available, other factors such as light signaling and anti-sense RNA accumulation have been shown to contribute to this regulation. Here, we review the recent advancements demonstrating that multiple factors coordinately regulate the expression of cellulosic biomass degrading enzyme genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.