Abstract

When a reactant or a set of reactants undergoes several reactions (at least two) simultaneously, the reaction is said to be a complex reaction. The total conversion of the key reactant, which is used as a measure of reaction in simple reactions, has little meaning in complex reactions, and what is of primary interest is the fraction of reactant converted to the desired product. Thus the more pertinent quantity is product distribution from which the conversion to the desired product can be calculated. This is usually expressed in terms of the yield or selectivity of the reaction with respect to the desired product. From the design point of view, an equally important consideration is the analysis and quantitative treatment of complex reactions, a common example of which is the dehydration of alcohol represented by We call such a set of simultaneous reactions a complex multiple reaction. It is also important to note that many organic syntheses involve a number of steps, each carried out under different conditions (and sometimes in different reactors), leading to what we designate as multistep reactions (normally called a synthetic scheme by organic chemists). This could, for example, be a sequence of reactions like dehydration, oxidation, Diels-Alder, and hydrogenation. This chapter outlines simple procedures for the treatment of complex multiple and multistep reactions and explains the concepts of selectivity and yield. For a more detailed treatment of multiple reactions, the following books may be consulted: Aris (1969) and Nauman (1987). We conclude the chapter by considering a reaction with both catalytic and noncatalytic steps, which also constitutes a kind of complex reaction. Because both chemists and chemical engineers are involved in formulating a practical strategy for accomplishing an organic synthesis, it is important to appreciate the roles of each.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call