Abstract

Metal oxides such as VO_{2} undergo structural transitions to low-symmetry phases characterized by intricate crystalline order, accompanied by rich electronic behavior. We derive a minimal ionic Hamiltonian based on symmetry and local energetics which describes structural transitions involving all four observed phases, in the correct order. An exact analysis shows that complexity results from the symmetry-induced constraints of the parent phase, which forces ionic displacements to form multiple interpenetrating groups using low-dimensional pathways and distant neighbors. Displacements within each group exhibit independent, quasi-two-dimensional order, which is frustrated and fragile. This selective ordering mechanism is not restricted to VO_{2}: it applies to other oxides that show similar complex order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call