Abstract

Recent years have seen increasingly complex question-answering on knowledge bases (KBQA) involving logical, quantitative, and comparative reasoning over KB subgraphs. Neural Program Induction (NPI) is a pragmatic approach toward modularizing the reasoning process by translating a complex natural language query into a multi-step executable program. While NPI has been commonly trained with the ‘‘gold’’ program or its sketch, for realistic KBQA applications such gold programs are expensive to obtain. There, practically only natural language queries and the corresponding answers can be provided for training. The resulting combinatorial explosion in program space, along with extremely sparse rewards, makes NPI for KBQA ambitious and challenging. We present Complex Imperative Program Induction from Terminal Rewards (CIPITR), an advanced neural programmer that mitigates reward sparsity with auxiliary rewards, and restricts the program space to semantically correct programs using high-level constraints, KB schema, and inferred answer type. CIPITR solves complex KBQA considerably more accurately than key-value memory networks and neural symbolic machines (NSM). For moderately complex queries requiring 2- to 5-step programs, CIPITR scores at least 3× higher F1 than the competing systems. On one of the hardest class of programs (comparative reasoning) with 5–10 steps, CIPITR outperforms NSM by a factor of 89 and memory networks by 9 times. 1

Highlights

  • Recent years have seen increasingly complex question-answering on knowledge bases (KBQA) involving logical, quantitative, and comparative reasoning over KB subgraphs

  • We evaluate Complex Imperative Program Induction from Terminal Rewards (CIPITR) on the following two challenging tasks: (i) complex KBQA posed by the recently-published CSQA data set (Saha et al, 2018) and (ii) multi-hop KBQA in one of the more

  • We limit our effort on KBQA to the setting where the query is annotated with the gold KB-artifacts, which standardizes the input to the program induction for the competing models

Read more

Summary

Introduction

Recent years have seen increasingly complex question-answering on knowledge bases (KBQA) involving logical, quantitative, and comparative reasoning over KB subgraphs. Neural Program Induction (NPI) is a pragmatic approach toward modularizing the reasoning process by translating a complex natural language query into a multi-step executable program. There, practically only natural language queries and the corresponding answers can be provided for training. We present Complex Imperative Program Induction from Terminal Rewards (CIPITR), an advanced neural programmer that mitigates reward sparsity with auxiliary rewards, and restricts the program space to semantically correct programs using high-level constraints, KB schema, and inferred answer type. CIPITR solves complex KBQA considerably more accurately than key-value memory networks and neural symbolic machines (NSM). For moderately complex queries requiring 2- to 5-step programs, CIPITR scores at least 3× higher F1 than the competing systems. On one of the hardest class of programs (comparative reasoning) with 5–10 steps, CIPITR outperforms NSM by a factor of 89 and memory networks by 9 times.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.