Abstract

Abstract In this paper, we have investigated the complex dynamics of a one-dimensional spatial nonlinear coupled reaction-diffusion system with a Holling type IV functional response, akin to standard Michaelis-Menten inhibitory kinetics. Prey-taxis is included in a general reaction-diffusion equation to incorporate the active movement of predator species towards regions with high prey concentrations or if the predator is following some sort of cue (such as odor) to find the prey. We have carried out stability analysis of both the non-spatial model without diffusive spreading and of the spatial model. We performed extensive computer simulations to identify various parameter ranges for stable homogeneous solution. Our findings specifically elucidate the role of predator diffusion and prey-taxis in controlling emergent structures, and transitions towards spatio-temporal chaos. We observe that the increasing predator random movement and moderate value of prey-taxis stabilize the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.