Abstract

We study the power of constant-depth circuits containing negation gates, unbounded fan-in AND and OR gates, and a small number of MAJORITY gates. It is easy to show that a depth 2 circuit of sizeO(n) (wheren is the number of inputs) containingO(n) MAJORITY gates can determine whether the sum of the input bits is divisible byk, for any fixedk>1, whereas it is known that this requires exponentialsize circuits if we have no MAJORITY gates. Our main result is that a constant-depth circuit of size $$2^{n^{o(1)} } $$ containingn o(1) MAJORITY gates cannot determine if the sum of the input bits is divisible byk; moreover, such a circuit must give the wrong answer on a constant fraction of the inputs. This result was previously known only fork=2. We prove this by obtaining an approximate representation of the behavior of constant-depth circuits by multivariate complex polynomials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.