Abstract

Polycyclic aromatic compounds (PACs) are important toxic organic components in fine particulate matter (PM2.5), whereas the links between PM2.5 toxicity and associated PACs in ambient air are poorly understood. This study investigated the spatial–temporal variations of PACs in PM2.5 collected from 11 sampling sites across a Chinese megacity and characterized the reactive oxygen species (ROS) generation and cytotoxicity induced by organic extracts of PM2.5 based on cellular assays. The extra trees regression model based on machine learning and ridge regression were used to identify the key toxicants among complex PAC mixtures. The total concentrations of these PACs varied from 2.12 to 71.7 ng/m3 across the study city, and polycyclic aromatic hydrocarbons (PAHs) are the main PACs. The spatial variations of the toxicological indicators generally resembled those of the PAC concentrations, and the PM2.5 related to waste treatment facilities exhibited the strongest toxic potencies. The ROS generation was highly correlated with high molecular weight PAHs (MW302 PAHs), followed by PAHs with MW<302 amu and oxygenated PAHs, but not with nitrated PAHs and the plastics additives. The cell mortality showed weak correlations with these organic constituents. The associations between the biological endpoints and these PM2.5-bound contaminants were further confirmed by exposure to authentic chemicals. Four primary sources of PACs were identified, among which coal and biomass combustion sources (30.2% of the total PACs) and industrial sources (31.0%) were predominant. PACs emitted from industrial sources were highly associated with ROS generation in this city. Our findings highlight the potent ROS-generating potential of MW302 PAHs and the importance of industrial sources contributing to PM2.5 toxicity in this megacity, raising public concerns and further administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.