Abstract

A probe-corrected theory based on complex point sources is presented for computing the acoustic field of an arbitrary finite source from measurements of the near field on a cylindrical scanning surface. The complex point sources are used both as basis functions for the expansion of the field outside the scan cylinder and for the representation of the probe. The resulting probe-corrected formulas are considerably simpler than the standard probe-corrected formulas based on cylindrical waves. The new formulation makes simulations of near-field scanning systems much less computationally intensive than simulations based on standard theory. The complex point-source theory is validated through numerical examples involving a baffled circular piston transducer probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.