Abstract

The chemical state evolution of the Al–Si–N thin films at various Si contents is investigated by x-ray photoelectron spectroscopy (XPS). The detailed evolution of the Al 2p, Si 2p, and N 1s photoelectrons line positions and widths are used to identify different chemical environments as the Si content is changed. The results are compared to x-ray diffraction (XRD) data that indicate the formation of a two-phase Al1−xSixN/SiNy composite when the solubility limit of 6 at. % of Si in AlN is exceeded. In contrast to XRD data, no particular effect is observed in the XPS data at the solubility limit of Si. Instead, two compositional regions can be identified that are separated by a distinct change in the evolution of core level binding energy differences and chemical shifts at about 10–15 at. % of Si. This silicon concentration is identified as the onset of the formation of a SiNy intergranular phase that is a few monolayers thick, having a chemical bonding similar to that in bulk silicon nitride. The observed changes in the XPS data coincide well with the structural changes in the material at different silicon contents. The unambiguous identification of phases, especially of minority phases from XPS data, is, however, not possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.