Abstract

Ionic liquids are salts found in their liquid state at ambient temperature. The physicochemical properties of ionic liquids can be tailored by selecting constituent cation and anion from numerous available ions. The physicochemical properties can be further tuned by mixing different neat ionic liquids. Reported data of ionic liquid mixtures reveal that frequently investigated properties such as density, viscosity, and thermal stability follow corresponding mixing laws. Complex permittivity in the interval of terahertz frequencies is of great importance to understand the molecular interactions and the solvation dynamics which drive the macroscopic properties of ionic liquids; however, to the best of our knowledge, there are few reports about the mixing behavior of complex permittivity in ionic liquid mixtures. In this contribution, binary mixtures of 1-butyl-3-methylimidazoulium iodide ([C4C1im]I) and 1-butyl-3- methylimidazoulium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) are investigated in the terahertz spectral range, and the resulting low-energy spectra are analyzed in order to clarify the mixing laws at play. The results show that the complex permittivity of mixtures of [C4C1im]I and ([C4C1im][NTf2] obeys a linear mixing law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.