Abstract

NiCuZn ferrite has recently attracted a lot of attention for its application in high frequency (up to a few GHz) multilayer chip inductors (MLCIs) and for other microwave devices owing to their favorable electromagnetic properties and low densification temperature. In order to study the effect of substitution of cations by cobalt in small concentration on the dielectric and magnetic properties at low and high frequencies, bulk polycrystalline ferrite samples of starting composition (Ni0.2Cu0.2Zn0.6)1 − x Co x Fe2O4, having x = 0, 0.01, 0.03 and 0.05, were prepared by citrate precursor method. Pure spinel (cubic) ferrite formation was confirmed by powder X-ray diffraction technique. Complex permittivity and permeability were measured at microwave frequencies (X-band) using the cavity perturbation method, which is a non-contact method. The values of real part of permittivity (e ′) vary in the range 7–9.6 and of the imaginary part (e ″) vary from 0.020–0.120, whereas real part of the permeability (μ′) lies in the range 2.6–14.0 and the imaginary part of permeability (μ″) varies from 0.5–6.0. It is observed that there is an increase in μ′ and decrease in the magnetic loss (tan δ μ) on increasing the cobalt concentration from x = 0 to x = 0.05. The variation of these parameters, both with frequency in X-band and with the cobalt concentration, is discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call