Abstract
A complex orthogonal (geometric) structure on a complex manifold is a geometric structure locally modelled on a non-degenerate quadric. One of the first examples of such a structure on a compact manifold of dimension three was constructed by Guillot. In this paper, we show that the same manifold carries a family of uniformizable complex orthogonal (geometric) structures which includes Guillot’s structure; here, a structure is said to be uniformizable if it is a quotient of an invariant open set of a quadric by a Kleinian group. We also construct a family of uniformizable complex (geometric) projective structures on a related compact complex manifold of dimension three.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.