Abstract

We used the Atacama Large (sub-)Millimeter Array (ALMA) and the IRAM Plateau de Bure Interferometer (PdBI) to image, with an angular resolution of 0.5$''$ (120 au) and 1$''$ (235 au), respectively, the emission from 11 different organic molecules in the protostellar binary NGC1333 IRAS 4A. We clearly disentangled A1 and A2, the two protostellar cores present. For the first time, we were able to derive the column densities and fractional abundances simultaneously for the two objects, allowing us to analyse the chemical differences between them. Molecular emission from organic molecules is concentrated exclusively in A2 even though A1 is the strongest continuum emitter. The protostellar core A2 displays typical hot corino abundances and its deconvolved size is 70 au. In contrast, the upper limits we placed on molecular abundances for A1 are extremely low, lying about one order of magnitude below prestellar values. The difference in the amount of organic molecules present in A1 and A2 ranges between one and two orders of magnitude. Our results suggest that the optical depth of dust emission at these wavelengths is unlikely to be sufficiently high to completely hide a hot corino in A1 similar in size to that in A2. Thus, the significant contrast in molecular richness found between the two sources is most probably real. We estimate that the size of a hypothetical hot corino in A1 should be less than 12 au. Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call