Abstract

In this study, we investigated a complex optically computed phase microscopy (complex-OCPM) technology. Based on a low coherence interferometer and an innovative optical computation approach, the complex-OCPM imaging system achieves depth resolved quantitative phase measurement. Particularly, the complex-OCPM imaging system directly measures the complex amplitude of the optical field emerging from the sample, extracts the phase as the argument of a complex signal, and achieves a high spatial resolution in phase imaging. We evaluated the performance of complex-OCPM imaging using resolution targets and live cells. Our results show that the complex-OCPM system achieves quantitative phase imaging with sub-cellular resolution on label-free cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call