Abstract
Complex, optically functional surfaces in organic polymers can be fabricated by replicating relief structures present on the surface of an elastomeric master with an ultraviolet or thermally curable organic polymer, while the master is deformed by compression, bending, or stretching. The versatility of this procedure for fabricating surfaces with complex, micrometer- and submicrometer-scale patterns was demonstrated by the production of (i) diffraction gratings with periods smaller than the original grating; (ii) chirped, blazed diffraction gratings (where the period of a chirped grating changes continuously with position) on planar and curved surfaces; (iii) patterned microfeatures on the surfaces of approximately hemispherical objects (for example, an optical surface similar to a fly's eye); and (iv) arrays of rhombic microlenses. These topologically complex, micropatterned surfaces are difficult to fabricate with other techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.