Abstract
Fluorescence has been demonstrated to be a viable method for detecting non-aqueous phase liquid (NAPL) contaminants comprised of polycyclic aromatic hydrocarbons (PAHs). Commercially available cone penetrometer (CPT)induced fluorescence based sensor platforms can be used to detect NAPLs such as petroleum oils and lubricants in-situ. In addition, these approaches can be used to detect dense non-aqueous phase liquid (DNAPL) source zones by detecting commingled oils, fuels, and naturally oc curring organic materials entrained by or in solution with DNAPLs and carried to depths below the water table. The currently available CPT-based fluorescence systems are typically restricted to a single wavelength excitation source, each demonstrating specific advantages and disadvantages with respect to detection capabilities for partic ular fluorophores. Several neat NAPLs and mixtures were analyzedfor specificfluores-cence characteristics to determine the optimal excitation source for site characterization efforts. Commercially available cone penetrometer based fluorescence detection systems were ranked according to the potential for likelihood of detection. Our work demon strates that an optimal range of excitation wavelength can be determined for specific fluorophores within NAPL mixtures, and that available systems can be ranked based on the specific contaminant and site characteristics. We have identified optimal excitation sourcesfor a number of common NAPL mixtures, including petroleum-basedfuels and a lubricant mixed with a chlorinated solvent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Soil and Sediment Contamination: An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.