Abstract

Complex morphology target, which is size-varying and shape-varying, is a great challenge for infrared surveillance system. In this paper, temporal low-rank and sparse decomposition model and spatial low-rank and sparse decomposition model are designed respectively. Subsequently, a joint spatial-temporal detection method of complex morphology target is presented. Firstly, initial background subspace is obtained based on training sequence which does not contain infrared target. Secondly, temporal target image is recovered by l1 minimization after projecting orthogonal to background subspace. Thirdly, original image is decomposed into background image and spatial target image using inexact augmented Lagrange multipliers approach. Fourthly, by fusing the two target images, the possible small targets can be extracted well. Finally, background subspace is updated based on incremental singular value decomposition algorithm. The experimental results show that our method is effective and robust to detect complex morphology infrared targets. In particular, the proposed method can extract targets accurately, which is important for target recognition. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.