Abstract

Detailed patch-clamp studies have been made of ion channels in the plasma membrane and tonoplast of the yeast Saccharomyces cerevisiae. The predominant tonoplast channel is a high-conductance cation-selective inward rectifier (passing ions easily into the cytoplasm from the vacuole), with its open probability (Po) peaking at about -80 mV (cytoplasm negative) and falling to near zero at +80 mV. It has a maximal slope conductance of approximately 150 pS in 100 mmol l-1 KCl, and conducts Na+, K+ and Ca2+. Elevated cytoplasmic Ca2+ concentration, alkaline pH and reducing agents can activate the channel, its likely physiological function being to adjust cytoplasmic Ca2+ concentration from the vacuolar reservoir. The predominant plasma-membrane channel is a strongly outward rectifying K+ channel (passing K+ easily out of the cytoplasm to the extracellular medium), which is activated by positive-going membrane voltages as well as by elevated cytoplasmic Ca2+ concentration and alkaline pH. Interaction between membrane voltage and [Ca2+]cyt is complex and defines three parallel closed states for the channel: a Ca(2+)-independent brief closure (I), a calcium-inhibited long closure (G) and, at large positive voltages, a calcium-induced brief blockade (B). This channel is likely to function in steady-state turgor regulation and in charge balancing during proton-coupled substrate uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call