Abstract

There is growing evidence from human intracranial electrocorticography (ECoG) studies that interactions between cortical frequencies are important for sensory perception, cognition and inter-regional neuronal communication. Recent studies have focused mainly on the strength of phase-amplitude coupling in cross-frequency interactions. Here, we introduce a complex modulation method based on measures of coherence to investigate cross-frequency coupling in the neural time series. This novel approach uses complex demodulation transform and coherence measures from the transformed signals. We used this method to quantify power coupling between two cortical frequency bands: theta (47 Hz) and high gamma (70-150 Hz) in ECoG signals recorded during an auditory task. We compared complex modulation results with traditional phase-amplitude coupling measures (PAC) derived from the same ECoG dataset. Our results suggest that cross-frequency coupling may involve changes in both phase-amplitude and power relationships between frequencies, reflecting the complexity of neuronal oscillatory interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call