Abstract

Primitive carbonaceous xenolithic clasts found in sturdy metamorphosed meteorites often provide opportunities to reach labile volatile-rich materials which are easily destroyed during atmospheric entry and materials which we do not have sampled as individual meteorites. Among them, a xenolithic carbonaceous clast in the Zag H3–6 ordinary chondrite has been providing us with the opportunity to analyze a possible sample from D/P-type asteroids. Here we performed a new suite of coordinated analyses of organic matter in the Zag clast using the atomic force microscope infrared spectroscopy (AFM-IR) combined with nanoscale secondary ion mass spectrometer (NanoSIMS), X-ray absorption near-edge spectroscopy (XANES) coupled with scanning transmission X-ray macroscope (STXM), Raman, and (scanning) transmission electron microscopy [(S)TEM] on adjacent ultramicrotomed thin sections from a single sample grain. We successfully demonstrated the practicality of coordinated analyses using AFM-IR, Raman and NanoSIMS on the same sample area, as well as STXM/XANES on adjacent (and nearly identical) thin sections to those used for AFM-IR. The AFM-IR map and STXM maps provided consistent and complementary results. We found that at least two types of organics were closely mixed in this specimen. One was deuterium-rich, CO rich organics with likely smaller aromatic domains, possibly originating in relatively oxidized environments from D-rich precursors. The other type was less deuterium-rich, but aromatic-rich organics, possibly produced in relatively reduced and higher temperature environments with less deuterium-rich precursors. These characteristics point to complex mixtures of materials with different origins and sampling a wide heliocentric range of the Solar System before accretion in the parent body of the clast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call