Abstract

The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 ll -HFs), perpendicular lamellar phase with cylinders at the interface (LAM⊥-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2⊥-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film.

Highlights

  • Block copolymers consisting of chemically distinct polymers linked by a covalent bond at one end have the ability to self-assemble into a variety of ordered nanostructures such as lamellae (LAM), hexagonally packed cylinders (HEX), and body-centered cubic (BCC) spheres and more complex structures such as gyroid (G) in melts and solutions [1,2,3,4,5,6,7]

  • In order to know the whole phase behavior of ABC triblock copolymer thin film confined between two parallel polymer brush-coated surfaces, we use a combinatorial screening method based on the real space implementation of the self-consistent field theory (SCFT), originally proposed by Drolet and Fredrickson for block copolymer melts [65,66,57,58] to search the equilibrium microphases of ABC linear triblock copolymers confined between the two parallel polymer brush-coated hard surfaces in three dimensions

  • The morphology and the phase diagrams of ABC triblock copolymer thin film confined between polymer brush-coated surfaces are investigated by the real-space self-consistent field theory in three dimensions

Read more

Summary

Introduction

Block copolymers consisting of chemically distinct polymers linked by a covalent bond at one end have the ability to self-assemble into a variety of ordered nanostructures such as lamellae (LAM), hexagonally packed cylinders (HEX), and body-centered cubic (BCC) spheres and more complex structures such as gyroid (G) in melts and solutions [1,2,3,4,5,6,7]. This unique characteristic of block copolymers provides possibilities for their potential applications in nanoscience, such as molecular template and nanotubes. By continuously varying the compositions of the block copolymer, the morphologies are obtained, and the phase diagrams are constructed for three different cases of interaction parameters: (1) identical interactions between three different components, (2) frustrated condition, and (3) non-frustrated condition

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call