Abstract

Chemical segregation of alloying elements during solidification of steel grades leads to development of a banded microstructure, causing a degree of anisotropy that can be detrimental to the mechanical behavior under service conditions. It is well-known that the presence of strongly orientated martensite bands in carbide-free bainitic microstructures, associated to inhomogeneous Mn redistribution during solidification, leads to a remarkable deterioration in toughness in advanced high strength bainitic steels. In this study, while bands were clearly visible on light optical micrographs of continuously cooled carbide-free bainitic steels, scanning electron microscopy examination revealed only a gradual transition between matrix and bands, both with a granular bainitic structure. Electron backscatter diffraction was used to quantify the bainitic packet size and volume fraction of martensite/austenite constituent between and within the bands, after a process of optimization of the analysis settings in order to minimize the inherent difficulties linked to sub-micrometric and minority phase indexation. The quantitative microstructural results showed negligible morphological differences between bainitic structure bands and matrix, only solute segregation of Cr and Mo was detected by energy-dispersive X-ray spectroscopy within bands, which must be responsible for a stronger resistance against metallographic etching in those regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.