Abstract

Enzymatic reactions in complex environments often take place with concentrations of enzyme comparable to that of substrate molecules. Two such cases occur when an enzyme is used to detect low concentrations of substrate/analyte or inside a living cell. Such concentrations do not agree with standard in vitro conditions, aimed at satisfying one of the founding hypotheses of the Michaelis-Menten reaction scheme, MM. It would be desirable to generalize the classical approach and show its applicability to complex systems. A permeable micrometrically structured hydrogel matrix was fabricated by protein cross-linking. Glucose oxidase enzyme (GOx) was embedded in the matrix and used as a prototypical system. The concentration of H2O2 was monitored in time and fitted by an accurate solution of the enzymatic kinetic scheme, which is expressed in terms of simple functions. The approach can also find applications in digital microfluidics and in systems biology where the kinetics response in the linear regimes often employed must be replaced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.