7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1111/j.1365-294x.2005.02486.x
Copy DOIJournal: Molecular Ecology | Publication Date: Mar 16, 2005 |
Citations: 108 |
In contrast to the polygynous mating systems typically displayed by most reptilian taxa, long-term genetic monogamy appears to be widespread within a lineage of group-living Australian scincid lizards, the Egernia group. We have recently shown that White's skink, Egernia whitii, lives in small but temporally stable social aggregations. Here, we examine the mating system, spatial organization, and dispersal patterns of E. whitii using behavioural field studies and data from four microsatellite loci. Parentage analysis of E. whitii litters revealed that its mating system is characterized by both polygyny and monogamy. Polygyny was the predominant mating system but within-season social and genetic monogamy was common (36-45% of breeding pairs). The incidence of between-season monogamy in E. whitii was rare compared to that reported for its congeners. Low levels of multiple paternity (12% of litters) and extra-group paternity (16%) were detected. Social groups are generally comprised of closely related individuals, but breeding pairs were not more closely related compared to other potential mates. Spatial autocorrelation analyses revealed significant positive local genetic structure over 50 m, which was consistent for all age-sex classes. There was no clear and consistent evidence for sex-biased dispersal, with assignment tests (mean assignment index) and relatedness analyses suggesting female-biased dispersal, but spatial autocorrelation analyses indicating a trend for male-biased dispersal. We discuss the implication of our results in regard to the factors promoting the evolution of monogamy within the Egernia group.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.