Abstract
The energy landscape of carbon is exceedingly complex, hosting diverse and important metastable phases, including diamond, fullerenes, nanotubes, and graphene. Searching for structures, especially those with large unit cells, in this landscape is challenging. Here we use a combined stochastic search strategy employing two algorithms (abinitio random structure search and random sampling strategy combined with space group and graph theory) to apply connectivity constraints to unit cells containing up to 100 carbon atoms. We uncover three low energy carbon polymorphs (Pbam-32, P6/mmm, and I4[over ¯]3d) with new topologies, containing 32, 36, and 94 atoms in their primitive cells, respectively. Their energies relative to diamond are 96, 131, and 112 meV/atom, respectively, which suggests potential metastability. These three carbon allotropes are mechanically and dynamically stable, insulating carbon crystals with superhard mechanical properties. The I4[over ¯]3d structure possesses a direct band gap of 7.25eV, which is the widest gap in the carbon allotrope family. Silicon, germanium, and tin versions of Pbam-32, P6/mmm, and I4[over ¯]3d also show energetic, dynamical, and mechanical stability. The computed electronic properties show that they are potential materials for semiconductor and photovoltaic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.