Abstract
Link prediction involves the use of entities and relations that already exist in a knowledge graph to reason about missing entities or relations. Different approaches have been proposed to date for performing this task. This paper proposes a combined use of the translation-based approach with the Convolutional Neural Network (CNN)-based approach, resulting in a novel model, called ConCMH. In the proposed model, first, entities and relations are embedded into the complex space, followed by a vector multiplication of entity embeddings and relational embeddings and taking the real part of the results to generate a feature matrix of their interaction. Next, a 2D convolution is used to extract features from this matrix and generate feature maps. Finally, the feature vectors are transformed into predicted entity embeddings by obtaining the inner product of the feature mapping and the entity embedding matrix. The proposed ConCMH model is compared against state-of-the-art models on the four most commonly used benchmark datasets and the obtained experimental results confirm its superiority in the majority of cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.