Abstract
The complex method of interpolation, going back to Calderón and Coifman et al., on the one hand, and the Alexander–Wermer–Słodkowski theorem on polynomial hulls with convex fibers, on the other hand, are generalized to a method of interpolation of real (finite-dimensional) Banach spaces and of convex functions. The underlying duality in this method is given by the Legendre transform. Our results can also be interpreted as new properties of solutions of the homogeneous complex Monge–Ampère equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.