Abstract

A supply chain network is a typical interdependent network composed of an undirected cyber-layer network and a directed physical-layer network. To analyze the robustness of this complex interdependent supply chain network when it suffers from disruption events that can cause nodes to fail, we use a cascading failure process that focuses on load propagation. We consider load propagation via connectivity links as node failure spreads through one layer of an interdependent network, and we develop a priority redistribution strategy for failed loads subject to flow constraint. Using a giant component function and a one-to-one directed interdependence relation between nodes in a cyber-layer network and physical-layer network, we construct time-varied functional equations to quantify the dynamic process of failed loads propagation in an interdependent network. Finally, we conduct a numerical simulation for two cases, i.e., single node removal and multiple node removal at the initial disruption. The simulation results show that when we increase the number of removed nodes in an interdependent supply chain network its robustness undergoes a first-order discontinuous phase transition, and that even removing a small number of nodes will cause it to crash.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.