Abstract

BackgroundSuccinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist.ResultsVia CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells.ConclusionsOverall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.

Highlights

  • Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC)

  • We demonstrate the efficacy of the mitochondrial therapeutic idebenone to improve mitochondrial dysfunction in cells with Succinate dehydrogenase subunit D (SDHD) mutation

  • Construction of mutant HEK293ΔSDHD The single guide RNA sequences were designed based on the 609 bp long SDHD nucleotide sequence of

Read more

Summary

Introduction

Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the innermembrane and transferring electrons from the complex to ubiquinone. Succinate dehydrogenase (Complex II; EC 1.3.5.1) uniquely serves as a component of both the Krebs cycle and the ETC [1, 2]. As a component of the Krebs Cycle, Complex II catalyzes oxidation of succinate to fumarate [1, 3], whereas in the ETC, it is one of two entry points for electrons, acquiring electrons from succinate and donating them to ubiquinone (CoQ) [1,2,3]. An in-depth understanding of Complex II in energetic homeostasis and its viability as a target for treatment is warranted

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call