Abstract

BackgroundHuman genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. One of the strongest associations in each case is inflammatory bowel disease (IBD), but disease risk cannot be explained fully by either factor individually. Recent findings point to interactions between host genetics and microbial exposures as important contributors to disease risk in IBD. These include evidence of the partial heritability of the gut microbiota and the conferral of gut mucosal inflammation by microbiome transplant even when the dysbiosis was initially genetically derived. Although there have been several tests for association of individual genetic loci with bacterial taxa, there has been no direct comparison of complex genome-microbiome associations in large cohorts of patients with an immunity-related disease.MethodsWe obtained 16S ribosomal RNA (rRNA) gene sequences from intestinal biopsies as well as host genotype via Immunochip in three independent cohorts totaling 474 individuals. We tested for correlation between relative abundance of bacterial taxa and number of minor alleles at known IBD risk loci, including fine mapping of multiple risk alleles in the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene exon. We identified host polymorphisms whose associations with bacterial taxa were conserved across two or more cohorts, and we tested related genes for enrichment of host functional pathways.ResultsWe identified and confirmed in two cohorts a significant association between NOD2 risk allele count and increased relative abundance of Enterobacteriaceae, with directionality of the effect conserved in the third cohort. Forty-eight additional IBD-related SNPs have directionality of their associations with bacterial taxa significantly conserved across two or three cohorts, implicating genes enriched for regulation of innate immune response, the JAK-STAT cascade, and other immunity-related pathways.ConclusionsThese results suggest complex interactions between genetically altered host functional pathways and the structure of the microbiome. Our findings demonstrate the ability to uncover novel associations from paired genome-microbiome data, and they suggest a complex link between host genetics and microbial dysbiosis in subjects with IBD across independent cohorts.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-014-0107-1) contains supplementary material, which is available to authorized users.

Highlights

  • Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases

  • Genotype-microbiome associations conserved across independent cohorts Our genotype-microbiome association testing methodology included steps to overcome power limitations given the very large number of potential comparisons, to incorporate published knowledge of signaling and metabolic pathways in the host genome, and to control for multiple environmental host factors affecting gut microbiome composition (Figure 1)

  • We controlled for recent antibiotic usage (

Read more

Summary

Introduction

Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. Involvement of the JAK-STAT pathway in immune responses, and involvement of the IL23-Th17 pathway in microbial defense mechanisms, are possible links between impaired immune response and imbalances in bacterial assemblage [1,2,3] These genetic findings are in line with separate, independent tests of microbial shifts associated with IBD. Despite the documented independent associations of IBD with heritable host immune deficiencies and with microbial shifts, there has been limited study of the co-association of complex host genetic factors with microbial composition and metabolism in IBD patients or other populations [9,10,11,12,13,14,15,16,17], and the mechanisms of host-microbiome disease pathways are largely unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.