Abstract

The flow over aircraft bays are often represented using rectangular cavities; however, this simplification neglects many features of the actual flight geometry which could affect the unsteady pressure field and resulting loading in the bay. To address this shortcoming, a complex cavity geometry was developed to incorporate more realistic aircraft-bay features including shaped inlets, internal cavity variations, and doors. A parametric study of these features was conducted at subsonic Mach numbers. Increased higher frequency content and higher-amplitude fluctuations were found in the complex geometry that could produce severe loading conditions for stores carried within the bays. High-frequency content was generated by features that constricted the flow such as leading edge overhangs, internal cavity variations, and the presence of closed doors. Also, the Rossiter modes of the complex configurations were usually shifted in frequency from the simple rectangular cavity, and many modes had much higher amplitudes. Broadband frequency components measured at the aft wall of the complex cavities were also significantly higher than in the rectangular geometry. These changes highlight the need to consider complex geometric effects when predicting the flight loading of aircraft bays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.