Abstract

ABSTRACTThe properties of electric double layers near curved surfaces of arbitrary shape and genus are obtained exactly within the Debye-Hückel theory by means of multiple-scattering expansion. For smooth membranes, geometric and topological feature of the electrostatic free energy then emerge through convergent expansions in inverse powers of the principal radii of curvature. Some consequences for the electrostatic stability of various membrane shapes are considered. We also study the effects of surface singularities, e.g., wedges, on the thermodynamics of electric double layers near a rough colloid. Each wedge yields an additive contribution to the free energy that is a functionof the angle. A probabilistic Brownian representation of is given, which is entirely similar to that of vibration eigenmodes given by M. Kac long ago in “Canone hear the shape of a drum?” [Amer. Math. Monthly 73S, 1 (1966)]. The analysis yields a universal scaling law for the free energy of a rough colloid with its fractal Minkowski dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.