Abstract

We construct and analyze Gauss-type quadrature rules with complex- valued nodes and weights to approximate oscillatory integrals with stationary points of high order. The method is based on substituting the original interval of integration by a set of contours in the complex plane, corresponding to the paths of steepest descent. Each of these line integrals shows an exponentially decaying behaviour, suitable for the application of Gaussian rules with non-standard weight functions. The results differ from those in previous research in the sense that the constructed rules are asymptotically optimal, i.e., among all known methods for oscillatory integrals they deliver the highest possible asymptotic order of convergence, relative to the required number of evaluations of the integrand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.