Abstract
The shallowest region of subduction megathrust accommodates deformation by a spectrum of seismic modes including continuous aseismic creep and peculiar seismic phenomena as slow slip events. However, the mechanisms behind these phenomena remain enigmatic because they are not explained by conventional frictional models. This because the shallowest regions of subduction zones are characterized by unconsolidated, clay-rich lithologies that, nominally, cannot nucleate seismic events due to their frictionally weak and rate-strengthening attributes. Here we present laboratory friction experiments showing that clay-rich experimental faults with bulk rate strengthening behavior and low healing rate can contemporaneously creep and nucleate slow slip events. These instabilities are self-healing, slow ruptures propagating within a thin shear zone and driven by structural and stress heterogeneities. We propose that the bulk rate-strengthening frictional behavior promotes the observed long-term aseismic creep whereas local frictional mechanism causes slow rupture nucleation and propagation. Our results illustrate the complex behavior of clay-rich lithologies, providing a new paradigm for the interpretation of the genesis of slow slip as well as significant implications for seismic hazard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.