Abstract

In this work we study the modal characteristics of localized surface plasmons in graphene-coated, circular cross-section wires. Localized surface plasmons are represented in terms of cylindrical multipole partial waves characterized by discrete, complex frequencies that depend on the size of the wire and can be dynamically tuned via a gate voltage. We consider both intrinsically nonplasmonic wires and intrinsically plasmonic wires. In the first case the localized surface plasmons are introduced by the graphene coating, whereas in the second case the localized eigenmodes of the graphene coating are expected to hybridize those already existing in the bare wire. We show that the approach presented here, valid for particle sizes where the retardation effects can be significant, is in good agreement with analytical expressions obtained in the limit when particle size is very small compared to the wavelength of the eigenmode and with results indirectly determined from scattering cross-section spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.