Abstract

Abstract The classical wave equation is generalized within fractional framework, by using fractional derivatives of real and complex order in the constitutive equation, so that it describes wave propagation in one dimensional infinite viscoelastic rod. We analyze existence, uniqueness and properties of solutions to the corresponding initial-boundary value problem for generalized wave equation. Also, we provide a comparative analysis with the case of the same equation but considered on a bounded or half-bounded spatial domain. We conclude our investigation with a numerical example that illustrates obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.