Abstract

The stability constants of the 1:1 complexes formed in aqueous solution between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Zn2+, or Cd2+ (M2+) and methyl thiophosphate (MeOPS(2-)) or uridine 5'-O-thiomonophosphate (UMPS(2-)) (PS(2-)=MeOPS(2-) or UMPS(2-)) have been determined (potentiometric pH titrations; 25 degrees C; I = 0.1 M, NaNO(3)). Comparison of these results for M(PS) complexes with those known for the parent M(PO) phosphate species, where PO(2-)=CH(3)OPO(2-)(3) or UMP(2-) (uridine 5'-monophosphate), shows that the alkaline earth metal ions, as well as Mn2+, Co2+, and Ni2+ have a higher affinity for phosphate groups than for their thio analogues. However, based on the linear log K(M)(M(R-PO3)) versus pK(H)(H(R-PO3)) relationships (R-PO(2-)(3) simple phosphate monoester or phosphonate ligands with a non-interacting residue R) it becomes clear that the indicated observation is only the result of the lower basicity of the thiophosphate residue. In contrast, the thio complexes of Zn2+ and Cd2+ are more stable than their parent phosphate ones, and this despite the lower basicity of the PS(2-) ligands. This stability increase is identical for M(MeOPS) and M(UMPS) species and amounts to about 0.6 and 2.4 log units for Zn(PS) and Cd(PS), respectively. Since no other binding site is available in MeOPS(2-), this enhanced stability has to be attributed to the S atom. Indeed, from the mentioned stability differences it follows that Cd2+ in Cd(PS) is coordinated by more than 99% to the thiophosphate S atom; the same value holds for Pb(PS), which was studied earlier. The formation degree of the Sbonded isomer amounts to 76+/-6 % for Zn(PS) and is close to zero for the corresponding Mg2+, Ca2+, and Mn2+ species. It is further shown that Zn(MeOPS)(aq)(2+) releases a proton from a coordinated water molecule with pK(a) approximately 6.9; i.e., this deprotonation occurs at a lower pH value than that for the same reaction in Zn(aq)(2+). Since Mg2+, Ca2+, Mn2+, and Cd2+ have a relatively low tendency for hydroxo complex formation, it was possible, for these M2+, to also quantify the stability of the binuclear complexes, M(2)(UMPS-H)+, where one M2+ is thiophosphate-coordinated and the other is coordinated at (N3)(-) of the uracil residue. The impact of the results presented herein regarding M2+/nucleic acid interactions, including those of ribozymes (rescue experiments), is briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call