Abstract

The repair of DNA double-strand breaks in Saccharomyces cerevisiae requires genes of the RAD52 epistasis group, of which RAD55 and RAD57 are members. Here, we show that the x-ray sensitivity of rad55 and rad57 mutant strains is suppressible by overexpression of RAD51 or RAD52. Virtually complete suppression is provided by the simultaneous overexpression of RAD51 and RAD52. This suppression occurs at 23 degrees C, where these mutants are more sensitive to x-rays, as well as at 30 degrees C and 36 degrees C. In addition, a recombination defect of rad55 and rad57 mutants is similarly suppressed. Direct in vivo interactions between the Rad51 and Rad55 proteins, and between Rad55 and Rad57, have also been identified by using the two-hybrid system. These results indicate that these four proteins constitute part of a complex, a "recombinosome," to effect the recombinational repair of double-strand breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.