Abstract

d-β-Hydroxybutyrate dehydrogenase ( d-3-hydroxybutyrate:NAD + oxidoreductase, EC 1.1.1.30) is a lipid-requiring enzyme which specifically requires phosphosphatidylcholine for enzymic activity. The phosphatidylcholine modifies the binding and orientation of the coenzyme, NAD(H), with respect to the enzymes. In the present study, two derivatives of NAD, spin-labeled either at N-6 or C-8 of the adenine ring, were found to be active as coenzyme. The binding affinity of NADH to the enzyme was opitimized by increasing the salt concentration and increasing the pH from 6 to 8, with the p K at 6.8. Monomethylmalonate, a substrate analogue, was found to enhance NADH binding ( K d is reduced from 4 to 1 μM). Sulfite strongly enhances the binding of NAD + via the enzyme-catalyzed formation of an adduct of sulfite with the nucleotide; the K d for binding of NAD-sulfite is in the micromolar range, whereas NAD + binding is more than a magnitude weaker. The binding of spin-labeled NAD(H) was further characterized by EPR spectroscopy. Increased sensitivity and resolution were obtained with the use of NAD(H) analogues perdeuterated in the spin-label moiety. For these analogues bound to d-β-hydroxybutyrate dehydrogenase in phospholipid vesicles, EPR studies showed the spin-label moiety to be constrained and revealed two distinct components. Increasing the viscosity of the medium by addition of glycerol affected the EPR spectral characteristics of only the component with the smaller resolved averaged hyperfine splitting. The stage is now set to study motional characteristics of the enzyme, using these spin-labeled probes which mimic the coenzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.