Abstract

Microbial rhodopsins execute diverse biological functions in the cellular membrane. A mechanistic understanding of their functional profile is, however, still limited. We used solid-state NMR (ssNMR) spectroscopy to study structure and dynamics of a 2 x 400 amino acid sensory rhodopsin/transducer (SRII/HtrII) complex from Natronomonas pharaonis in a natural membrane environment. We found a receptor-transducer binding interface in the ground state that significantly extends beyond the available X-ray structure. This binding domain involves the EF loop of the receptor and stabilizes the functionally relevant, directly adjacent HAMP domain of the transducer. Using 2D ssNMR difference spectroscopy, we identified protein residues that may act as a functional module around the retinal binding site during the early events of protein activation. These latter protein segments, the inherent plasticity of the HAMP domain, and the observation of an extended SRII/HtrII membrane-embedded interface may be crucial components for optimal signal relay efficiency across the cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.