Abstract

This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particles from the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters the deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.